Exponential Runge–Kutta methods for parabolic problems
نویسندگان
چکیده
منابع مشابه
Exponential Runge-Kutta methods for parabolic problems
The aim of this paper is to construct exponential Runge-Kutta methods of collocation type and to analyze their convergence properties for linear and semilinear parabolic problems. For the analysis, an abstract Banach space framework of sectorial operators and locally Lipschitz continuous nonlinearities is chosen. This framework includes interesting examples like reaction-diffusion equations. It...
متن کاملExplicit Exponential Runge-Kutta Methods for Semilinear Parabolic Problems
The aim of this paper is to analyze explicit exponential Runge-Kutta methods for the time integration of semilinear parabolic problems. The analysis is performed in an abstract Banach space framework of sectorial operators and locally Lipschitz continuous nonlinearities. We commence by giving a new and short derivation of the classical (nonstiff) order conditions for exponential RungeKutta meth...
متن کاملSubstructuring Methods for Parabolic Problems
Domain decomposition methods without overlapping for the approximation of parabolic problems are considered. Two kinds of methods are discussed. In the rst method systems of algebraic equations resulting from the approximation on each time level are solved iteratively with a Neumann-Dirichlet preconditioner. The second method is direct and similar to certain iterative methods with a Neumann-Neu...
متن کاملExplicit exponential Runge-Kutta methods of high order for parabolic problems
Exponential Runge–Kutta methods constitute efficient integrators for semilinear stiff problems. So far, however, explicit exponential Runge–Kutta methods are available in the literature up to order 4 only. The aim of this paper is to construct a fifth-order method. For this purpose, we make use of a novel approach to derive the stiff order conditions for high-order exponential methods. This all...
متن کاملAdaptive Finite Element Methods for Parabolic Problems
We continue our work on adaptive nite element methods with a study of time discretization of analytic semigroups. We prove optimal a priori and a posteriori error estimates for the discontinuous Galerkin method showing, in particular, that analytic semigroups allow long-time integration without error accumulation. 1. Introduction This paper is a continuation of the series of papers 1], 2], 3], ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Numerical Mathematics
سال: 2005
ISSN: 0168-9274
DOI: 10.1016/j.apnum.2004.08.005